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Spectral solution of time-dependent shallow
water hydroelasticity
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The spectral theory of a thin plate floating on shallow water is derived and used to
solve the time-dependent motion. This theory is based on an energy inner product in
which the evolution operator becomes unitary. Two solution methods are presented.
In the first, the solution is expanded in the eigenfunctions of a self-adjoint operator,
which are the incoming wave solutions for a single frequency. In the second, the
scattering theory of Lax–Phillips is used. The Lax–Phillips scattering solution is
suitable for calculating only the free motion of the plate. However, it determines the
modes of vibration of the plate–water system. These modes, which both oscillate and
decay, are found by a complex search algorithm based contour integration. As well
as an application to modelling floating runways, the spectral theory for a floating
thin plate on shallow water is a solvable model for more complicated hydroelastic
systems.

1. Introduction
Hydroelasticity is the study of immersed or floating elastic bodies in a fluid. It

has a wide range of applications including very large floating structures (Kashiwagi,
Koterayama & Ohkusu 1998), ships (Bishop, Price & Wu 1986), breakwaters (Stoker
1957) and sea ice (Squire et al. 1995). One of the best studied hydroelastic models is
the linear floating thin plate (Newman 1994; Ohmatsu 1997; Kagemoto, Fujino &
Zhu 1997 and Kashiwagi et al. 1998) because it models many physical systems, such
as a floating runway or an ice floe (Meylan & Squire 1996).

The time-dependence in linear hydroelastic problems is usually removed by solving
for a single frequency which we will refer to as the single-frequency solution. The
solution is normally found by expanding the elastic body motion in the free modes
of vibration and solving the fluid equations using a Green function (Bishop et al.
1986). This is analogous to solving for a rigid floating body using the six rigid
modes (Sarpkaya & Isaacson 1981). While alternative methods have been developed
(Kashiwagi 1998; Ohmatsu 1997; Kagemoto et al. 1997), these are based on exploiting
some property such as a simple geometry or high relative stiffness.

In contrast to the single-frequency solutions, solving time-dependent linear hy-
droelastic systems remains a major challenge. Kashiwagi (2000) and Endo & Yago
(1999) have developed a time-stepping procedure; however, this method results in
error growth in time. Since the problem is linear it is solvable by a spectral method
which eliminates the long-time growth of errors. Furthermore, such a method pro-
vides information about the behaviour of the solution, such as the decay constant
of the motion. However, the spectral theory for linear hydroelasticity has not been
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Figure 1. Schematic diagram of a thin plate floating on shallow water and the coordinates and
dimensions of the problem.

developed. For this reason, spectral type solutions such as that of Ohmatsu (1998),
based on a Fourier expansion of the single-frequency solution, have only solved the
problem in restricted circumstances.

A floating thin plate on shallow water is considered in this paper. This problem
has been chosen for the following reasons: while the single-frequency solution is
straightforward (Stoker 1957), the time-dependent solution has never been calculated;
recently Ohkusu & Namba (1998), Namba & Ohkusu (1999), and Ertekin & Kim
(1999) used it to model a floating runway; the spectral theory developed here is a
solvable model for more complex hydroelastic systems.

The spectral theory for a thin plate on shallow water is based on an inner product
which gives the energy of the plate–water system. With respect to this inner product
the evolution operator becomes unitary. Two different solution methods are derived
from this spectral theory. The first method is based on an expansion of the solution
in eigenfunctions of a self-adjoint operator. These are the single-frequency solutions.
The second solution method is based on the scattering theory of Lax–Phillips (Lax
& Phillips 1989). It provides the solution in terms of a countable number of modes
which have both an oscillation and a decay. These modes are important as they can
be used to characterize the response of the system. With the exception of Hazard &
Lenoir (1993), they have not been investigated for hydroelastic systems.

2. Formulation: a thin plate on shallow water
Figure 1 shows a schematic diagram of the problem. The plate is infinite in the

y-direction, so that only the x- and z-directions are considered. The x-direction is
horizontal, the positive z-axis points vertically up, and the plate covers the region
−b 6 x 6 b. The water is of uniform depth h which is small enough that the water
may be approximated as shallow (Stoker 1957). The amplitudes are assumed small
enough that the linear theory is appropriate, and the plate is sufficiently thin that the
shallow-draught approximation may be made (Namba & Ohkusu 1999). The solution
could be extended to waves incident at an angle on a infinite two-dimensional plate,
as described in Namba & Ohkusu (1999), but to keep the treatment straightforward
this is not done here.

The mathematical description of the problem follows from Stoker (1957). The
kinematic condition is

∂tζ = −h∂2
xφ, (2.1)

where φ is the velocity potential of the water (averaged over the depth) and ζ
is the displacement of the water surface or the plate (from the shallow-draught
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approximation). The equation derived by equating the pressure at the free surface is

−ρgζ − ρ∂tφ =

{
0, x /∈ (−b, b),
D∂4

xζ + ρ′d∂2
t ζ, x ∈ (−b, b), (2.2)

where D is the bending rigidity of the plate per unit length, ρ is the density of water,
ρ′ is the average density of the plate, g is the acceleration due to gravity, and d is the
thickness of the plate. At the ends of the plate the free edge boundary conditions

lim
x↓−b ∂

2
xζ = lim

x↑b ∂
2
xζ = lim

x↓−b ∂
3
xζ = lim

x↑b ∂
3
xζ = 0 (2.3)

are applied since these are common in offshore engineering applications (Namba &
Ohkusu 1999). However the theory which will be developed applies equally to any
of the energy-conserving edge conditions such as clamped or pinned and there is no
need for the boundary conditions to be symmetric. Equation (2.3) gives the following
implied boundary conditions for φ:

lim
x↓−b ∂

4
xφ = lim

x↑b ∂
4
xφ = lim

x↓−b ∂
5
xφ = lim

x↑b ∂
5
xφ = 0, (2.4)

which will be used subsequently.
Non-dimensional variables are now introduced. The space variables are

non-dimensionalized using the water depth h, and the time variables are non-
dimensionalized using

√
h/g. The non-dimensional variables are

x̄ =
x

h
, t̄ = t

√
g

h
, ζ̄ =

ζ

h
, φ̄ =

φ

h2
√
g/h

.

In these new variables, (2.1) and (2.2) become

∂t̄ζ̄ = −∂2
x̄φ̄ (2.5)

and

−ζ̄ − ∂t̄φ̄ =

{
0, x̄ /∈ (−b̄, b̄),
β∂4

x̄ζ̄ + γ∂2
t̄ ζ̄ , x̄ ∈ (−b̄, b̄), (2.6)

where

β =
D

ρgh4
, γ =

ρ′d
ρh
.

For clarity the overbar is dropped from now on.
The main change in extending the formulation to water of finite depth is that the

velocity potential will be governed by Laplace’s equation. This makes the solution
of the problem much more computationally demanding since Laplace’s equation
must be solved by a numerical method, for example the boundary element method.
Furthermore, the extension of the spectral theory, which will be developed here for
shallow water, to water of finite depth is non-trivial and remains a subject for further
work.

2.1. Neglecting the inertia term

It can be assumed that
∣∣γ∂2

t ζ
∣∣ � |ζ| for the following reasons (Namba & Ohkusu

1999). If we consider a mode of the displacement ζ = aeiωt (where a is the amplitude)
then ∂2

t ζ = −ω2aeiωt. For each frequency, ω, there is a corresponding wavelength
λ = 2π/ω. In the non-dimensional variables the wave speed and water depth are both
unity. Since the water is shallow the wavelength λ � 1 and thus ω � 1. It follows
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that any shallow water mode must satisfy
∣∣∂2
t ζ
∣∣ � |ζ| . Also, γ � 1 since ρ′ < ρ

(otherwise the plate would sink) and d � h (otherwise the submergence of the plate
would not be negligible). Therefore, ∣∣γ∂2

t ζ
∣∣� |ζ| ,

and we assume in what follows that the inertia, γ∂2
t ζ, is zero.

It should be noted that the inclusion of the inertia term in the spectral theory
which will be developed is difficult because it introduces a time dependence in the
energy inner product.

3. The energy inner product
While equations (2.5) and (2.6) are not complicated they cannot be solved in

a simple manner. It is not possible to Fourier transform in space because of the
spatial discontinuity of the differential equations. The Weiner–Hopf technique cannot
be used because the discontinuities divide the space into three regions. A Laplace
transformation in time can be applied but this leads to non-trivial equations involving
a spatially discontinuous differential equation subject to arbitrary initial conditions.
However, straightforward solutions can be derived using spectral theory.

The spectral-theory solution of equations (2.5) and (2.6) is based on the spectral
theory for a unitary operator (essentially, an operator is unitary if the adjoint is also
the inverse). We therefore require an inner product in which the evolution operator
is unitary. This inner product, since the system is conservative, is derived from the
energy. The potential and displacement both contribute to this energy and we combine
them in a two-component vector, U (x, t), given by

U (x, t) =

(
φ(x, t)
iζ(x, t)

)
. (3.1)

The energy consists of the kinetic energy of the water (∝ ∣∣φ2
t

∣∣), the potential energy

of the water (∝ ∣∣φ2
∣∣), and the energy of the plate. The energy inner product for the

two vectors

U 1 =

(
φ1

iζ1

)
and U 2 =

(
φ2

iζ2

)
is given by

〈U 1,U 2〉H = 〈∂xφ1, ∂xφ2〉+
〈
(1 + β(H(x− b)−H(x+ b))∂4

x)iζ1, iζ2

〉
, (3.2)

where H is the Heaviside function. The subscriptH is used to denote the special inner
product and the angle brackets without theH denote the standard inner product, i.e.

〈f(x), g(x)〉 =

∫ ∞
−∞
f(x)g∗(x)dx.

We now write (2.5) and (2.6) as

1
i
∂tU =PU,

U (x, t)t=0 =U 0(x) =

(
φ0(x)
iζ0(x)

)
,

 (3.3)

where the operator P is

P =

(
0 1 + β(H(x− b)−H(x+ b))∂4

x−∂2
x 0

)
.
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P is self-adjoint with respect to the inner product (3.2) since P satisfies

〈PU 1,U 2〉H = 〈U 1,PU 2〉H
from integration by parts and the boundary conditions at the end of the plate (2.3).
We can express the solution to (3.3) as

U (x, t) = eiPtU0 (3.4)

where eiPt is a unitary evolution operator.

4. The self-adjoint solution method
In this section, a solution for the time-dependent motion of the plate–water system

is developed using the theory of self-adjoint operators. To evaluate equation (3.4) we
require a method to calculate the evolution operator eiPt. This can be accomplished by
using the eigenfunctions of the operator P, which are the single-frequency solutions.

4.1. Finding the eigenfunctions

SinceP is self-adjoint, the eigenvalues, λ, must be real and therefore the eigenfunctions
of P are oscillatory exponentials outside the region of water covered by the plate.
Furthermore, since the plate is finite, the spectrum (set of eigenvalues) is all real
numbers. As is expected for two-component systems, there are two eigenfunctions
associated with each eigenvalue λ. We choose incoming waves from the left (Φ>)
and the right (Φ<) of unit amplitude as a basis for the eigenspace since they are the
standard single-frequency solutions. They have the following asymptotics:

lim
x→−∞Φ

> =

(
eiλx

λeiλx

)
+ S12

(
e−iλx

λe−iλx

)
, lim

x→∞Φ
> = S11

(
eiλx

λeiλx

)
and

lim
t→−∞Φ

< = S22

(
e−iλx

λe−iλx

)
, lim

x→∞Φ
> =

(
e−iλx

λe−iλx

)
+ S21

(
eiλx

λeiλx

)
,

where S11, S12, S21, and S22 are the reflection and transmission coefficients (which
must be determined). These eigenfunctions, which are analogous to the Jost solutions
of Schrodinger’s equation (Chadan & Sabatier 1989), will be used to calculated the
time-dependent solution.

We find the eigenfunction Φ>(λ, x) by solving (2.5) and (2.6) in each region. The
two components, φ>(λ, x) and iζ>λ, x), are given by

φ>(λ, x) =


e−iλx + S11(λ)e

iλx, x < −b,
6∑
j=1

αje
µj (λ)x, −b < x < b,

S12(λ)e
−iλx, x > b,

(4.1)

and

iζ>(λ, x) =


λe−iλx + λS11(λ)e

iλx, x < −b,
−1

λ

6∑
j=1

µj(λ)
2αje

µj (λ)x, −b < x < b,

λS12(λ)e
−iλx, x > b,

(4.2)
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where the coefficients µj(λ) are the six roots of the equation

βµ6 + µ2 + λ2 = 0. (4.3)

The values of S11(λ), S12(λ), and αj are found from the boundary conditions (2.4) and
the continuity of φ and ∂xφ at x = ±b. Therefore, to find the eigenfunction Φ>(λ, x),
we solve the 8× 8 linear system

Ma = b, (4.4)
where M is the matrix

M =



µ4
1e
−µ1b µ4

2e
−µ2b µ4

3e
−µ3b µ4

4e
−µ4b µ4

5e
−µ5b µ4

6e
−µ6b 0 0

µ5
1e
−µ1b µ5

2e
−µ2b µ5

3e
−µ3b µ5

4e
−µ4b µ5

5e
−µ5b µ5

6e
−µ6b 0 0

µ4
1e
µ1b µ4

2e
µ2b µ4

3e
µ3b µ4

4e
µ4b µ4

5e
µ5b µ4

6e
µ6b 0 0

µ5
1e
µ1b µ5

2e
µ2b µ5

3e
µ3b µ5

4e
µ4b µ5

5e
µ5b µ5

6e
µ6b 0 0

e−µ1b e−µ2b e−µ3b e−µ4b e−µ5b e−µ6b −e−iλb 0

µ1e
−µ1b µ2e

−µ2b µ3e
−µ3b µ4e

−µ4b µ5e
−µ5b µ6e

−µ6b −iλe−iλb 0

eµ1b eµ2b eµ3b eµ4b eµ5b eµ6b 0 −e−iλb

µ1e
µ1b µ2e

µ2b µ3e
µ3b µ4e

µ4b µ5e
µ5b µ6e

µ6b 0 iλe−iλb


and a and b are given by

a =



α1

α2

α3

α4

α5

α6

S11

S12


, b =



0
0
0
0

eiλb

−iλeiλb

0
0


.

Note that the coefficients S11 and S12 are contained in a.
The eigenfunctions for the wave propagating from the right Φ<(λ, x) are found

similarly. Since S11 represents the amplitude of the reflected wave and S12 represents
the amplitude of the transmitted wave, conservation of energy requires that |S11|2 +

|S12|2 = 1. Similarly, since the boundary conditions are symmetric S22(λ) = S11(λ) and
S12(λ) = S21(λ).

4.2. Solution with the eigenfunctions

Equation (3.4) can be solved by a generalized Fourier transform based on the
eigenfunctions of the operator P. The eigenfunctions are orthogonal since P is self-
adjoint, but they must be normalized. This is accomplished by using the following
identity: ∫ ∞

0

ei(λ1−λ2)tdt = πδ(λ1 − λ2)

where δ is the Dirac delta function. Therefore

〈Φ>(x, λ1),Φ
>(x, λ2)〉H = πδ(λ1 − λ2)λ

2
1(1 + |S11|2 + |S12|2)

+πδ(λ1 − λ2)λ1λ2(1 + |S11|2 + |S12|2)
= 4πδ(λ1 − λ2)λ

2
1, (4.5)
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Figure 2. The evolution of the displacement due to a pulse travelling to the right for the times shown.
The plate occupies the region −50 6 x 6 50 and is shown by the bold line. β = 2× 104, b = 50.

using the condition |S11|2 + |S12|2 = 1. Similarly

〈Φ<(x, λ1),Φ
<(x, λ2)〉H = 4πδ(λ1 − λ2)λ

2
1 (4.6)

and

〈Φ>(x, λ1),Φ
<(x, λ2)〉H = 2πδ(λ1 − λ2)λ

2
1(S11S

∗
21 + S12S

∗
22) (4.7)

= 0.

The generalized Fourier transform which solves the evolution equation (3.4) is

U (x, t) =

∫ ∞
−∞

〈
U 0(x),

Φ>(x, λ)

4πλ2

〉
H
Φ>(x, λ)eiλtdλ

+

∫ ∞
−∞

〈
U 0(x),

Φ<(x, λ)

4πλ2

〉
H
Φ<(x, λ)eiλtdλ. (4.8)

Equation (4.8) is the cornerstone of the approach. The integral in it can be calculated
by the fast Fourier transform while the inner product can be calculated by the fast
Fourier transform if the initial condition U0 is zero underneath the plate (−b < x < b).

4.3. Numerical calculations

The intention of this paper is to develop the solution methods rather than describe
the physics of the motion and therefore only a few solutions are presented. From
Namba & Ohkusu (1999) we assume the plate stiffness is β = 2 × 104 and the plate
length is b = 50 throughout. These values are typical for a floating runway. Figures 2
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Figure 3. The evolution of the potential due to a pulse travelling to the right for the times shown.
The plate occupies the region −50 6 x 6 50 and is shown by the bold line. β = 2× 104, b = 50.

and 3 show the displacement and potential, respectively, for a pulse travelling to the
right at the times t = 0, 30, 60, 90, 120, 150, 180, 210, and 240. The incoming wave
pulse was chosen to be a Gaussian in potential centred at x = −125 and sufficiently
sharp to be negligible under the plate,

U 0(x) =

(
φ (x)
iφ′ (x)

)
where

φ (x) =

exp

(
− (x+ 125)2

350

)
, x < −50,

0, x > −50.

At t = 0 the plate is initially at rest and the wave is to the left of the plate propagating
towards it. From t = 30 the wave has reached the plate and the plate begins to undergo
a complex bending motion in response to the incoming wave. The response of the
plate in turn induces waves in the surrounding water which propagate away from the
plate to the left and right. The final picture, t = 240, shows the plate at rest with
waves now propagating away from it. The majority of the wave energy has passed
under the plate and continues to propagate to the right. However, the shape of the
outgoing wave profile is markedly different from the incoming wave profile. Also,
there is a significant reflected wave propagating away from the plate to the left.

Figures 4 and 5 show the evolution of the plate from an initial displacement in the
absence of wave forcing for the times t = 0, 20, 40, 60, 80, 100, 120, 140, and 160.



Spectral solution of time-dependent shallow water hydroelasticity 395

t = 0

–200 2000

ζ

t = 20

–200 2000

t = 40

–200 2000

t = 60

–200 2000

ζ

t = 80

–200 2000

t =100

–200 2000

t =120

–200 2000

ζ

t =140

–200 2000

1.0

–0.5

0

t =160

–200 2000
x x x

0.5

–1.0

1.0

–0.5

0

0.5

–1.0

1.0

–0.5

0

0.5

–1.0

1.0

–0.5

0

0.5

–1.0

1.0

–0.5

0

0.5

–1.0

1.0

–0.5

0

0.5

–1.0

1.0

–0.5

0

0.5

–1.0

1.0

–0.5

0

0.5

–1.0

1.0

–0.5

0

0.5

–1.0

Figure 4. The evolution of a symmetric displacement for a plate released at t = 0 for the times
shown. The plate occupies the region−50 6 x 6 50 and is shown by the bold line. β = 2×104, b = 50.

Only the plate displacement is initially non-zero so that

U 0 (x) =

(
0

iζ (x)

)
.

Figure 4 shows the motion for the symmetric initial plate displacement

ζ (x) = exp

(
− x2

350

)
.

As the plate motion evolves the plate vibrates, straightens, and the amplitude decays.
The decay is due to the radiation of energy by the waves generated in the surrounding
water. A complex wave train is produced by the plate motion and can be seen
propagating away from it. Figure 5 shows the motion for the non-symmetric initial
plate displacement

ζ (x) = exp

(
− (x− 50)2

350

)
.

Again as the plate motion evolves it straightens, vibrates, and decays and induces
waves in the surrounding water.

5. The Lax–Phillips scattering solution method
In this section, a solution to the time-dependent motion of the plate–water system is

developed using the Lax–Phillips scattering theory (Lax & Phillips 1989). This method
will only solve for an initial condition which is zero outside the plate, i.e. U 0 (x) = 0
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Figure 5. The evolution of a non-symmetric displacement for a plate released at t = 0 for
the times shown. The plate occupies the region −50 6 x 6 50 and is shown by the bold line.
β = 2× 104, b = 50.

if |x| > b. However, it calculates the solution by an expansion in a countable number
of modes.

5.1. Lax–Phillips scattering

The Lax–Phillips scattering theory will be briefly outlined here for our specific
problem. The Hilbert space H is decomposed into three subspaces. The incoming
space, denoted by D−, consists of all waves travelling towards the plate, either from
the left or the right, as appropriate. The outgoing subspace, denoted by D+, consists
of all waves travelling away from the plate, again either to the left or right, as
appropriate. What remains is the scattering space, denoted by K, consisting of the
potential and displacement under the plate.

To apply the Lax–Phillips scattering the following conditions are required: D− and
D+ must be orthogonal; the incoming subspace must span the entire space under
temporal evolution. For our system, the first condition follows from the inner product
and the second condition follows from the simple structure of the eigenfunctions of
the operator P. From the Lax–Phillips scattering theory, since these conditions hold,
the equation of motion for the plate in the absence of incoming waves can be written

1

i
∂tU = BU , (5.1)

where B is a non-self-adjoint operator. B is related to P by

eiBt = PK eiPt∣∣
K
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where PK is the projection onto the subspace K and |K denotes a restriction to K.
Therefore eiBt is the evolution restricted to K of an initial condition which is zero
outside K. It should be noted that the equality in equation (5.1) is in general only
true asymptotically. However the numerical results show that for our case we have
equality for all times.

From the Lax–Phillips scattering theory, equation (5.1) can be solved by finding
the eigenvalues (sometimes referred to as scattering frequencies or resonances) and
eigenfunctions of B. The eigenvalues of B occur at the singularities of the analytic
extension to C of the scattering matrix, S(λ). This is given by

S(λ) =

(
S11 (λ) S12 (λ)
S21 (λ) S22 (λ)

)
, (5.2)

where S11 (λ), S12 (λ) , S21 (λ) , and S22 (λ) are the scattered wave coefficients found from
the single-frequency solutions in § 4.1. As a consequence of the Lax–Phillips scattering
theory the scattering matrix is unitary for real λ and the singularities must all lie in
the upper complex plane (Im(λ) > 0). Once the singularities have been found, the
eigenfunctions can be calculated. They are not orthogonal, since B is a non-self-
adjoint operator, but a biorthogonal system can be formed using the eigenfunctions
of the adjoint operator, B∗.

The eigenfunctions of B are the modes of vibration for the plate–water system.
These modes have a decay as well as an oscillation due to the radiation of energy
into the surrounding water. The frequency of the oscillation is determined by the real
part of the eigenvalue and the rate of decay is determined by the imaginary part of
the eigenvalue.

While the eigenvalues of B occur precisely at the singularities of the solution
found by a Laplace transformation in time the Lax–Phillips scattering theory solution
has three major advantages over the Laplace transform solution: the eigenvalues
(singularities) can be found using the scattering matrix; the difficult equations in
the Laplace space involving the initial condition do not need to be solved; the
contribution of the singularity (the residue) can be found directly from the inner
product of the initial condition with the corresponding eigenfunction of the adjoint
operator, B∗.

5.2. Finding the singularities of the scattering matrix

While the analytic extension of the scattering matrix is straightforward (the linear
system (4.4) is solved for complex λ), finding the singularities of the scattering matrix
is non-trivial. The difficulty lies in the fact that we must search the complex plane for
the singularities with no a priori knowledge about their location. We use a complex
search algorithm based contour integration. The determinant of the scattering matrix
is integrated around the contour of a region of the complex plane. If the value of
this integral is zero, then the region is assumed to contain no singularities and the
search is terminated (the possibility that the contribution of two or more singularities
might cancel can be treated by considering further integrals, such as the variation of
the argument around the contour). If the value of the integral is not zero, then the
region must contain singularities and it is then divided into subregions and the search
is repeated. Once the singularities have been located sufficiently well they are used as
seeds for Newton’s method and found to high accuracy.

If the eigenvalues have to be found for different parameter values then a homotopy,
or continuation, method can be used, which avoids the slow complex search method.
This method uses the known locations of the eigenvalues for one parameter value to
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Figure 6. The locations of the first 19 eigenvalues λn of B for β = 2× 104, b = 50.

determine the eigenvalues for a new parameter value by taking sufficiently small steps
that Newton’s method can be used with the previous solution as a seed. Unfortunately,
a homotopy method requires the solution of the eigenvalues for at least one parameter
value as an initial seed and this must be accomplished by a complex search algorithm.

The positions of the eigenvalues for β = 2× 104 and b = 50 are shown in figure 6.
They are denoted by λn, where n ∈ Z, and ordered by increasing real part, with n = 0
corresponding the eigenvalue with smallest absolute real part. From the picture and
on physical grounds, it seems likely that there exist asymptotics for the eigenvalues;
however this theory is not developed here.

5.3. Eigenfunctions

The eigenfunctions of B associated with the eigenvalue λn are denoted by Φ+(λn, x),
and those of B∗ (the adjoint of B) associated with the eigenvalue λ∗n are denoted by

Φ̂+
(
λ∗n, x

)
. That is,

BΦ+ (λn, x) = λnΦ
+ (λn, x)

and

B∗Φ̂+
(
λ∗n, x

)
= λ∗nΦ̂

+
(
λ∗n, x

)
.

The eigenfunction Φ+ (λn, x) can be written

Φ+ (λn, x) =

(
φ+ (λn, x)
iζ+ (λn, x)

)
=


6∑
j=1

αje
µj (λn)x

6∑
j=1

−αjµj (λn)
2

λn
eµj (λn)x

 (5.3)

where µj (λ) are the six roots of equation (4.3) and the coefficients αj are found from
the boundary conditions at the end of the plate (2.4) and the following condition.
Since the scattering matrix is singular, there are no incoming waves from either
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Figure 7. The real (solid) and imaginary (dashed) parts of the resonance eigenfunctions for n = 1,
3, 5, and 7 as shown. β = 2× 104, b = 50.

direction. We use the condition that there is no incoming wave at x = −b and that
the outgoing wave is of unit amplitude, i.e.

φ+ (λn,−b) = eiλnb, ∂xφ
+(λn, x)

∣∣
x=−b = iλne

iλnb.

We do not use the condition that there is no outgoing wave at x = b because the
system will become over determined. Therefore, the coefficients αj satisfy the linear
equation

Ma=b, (5.4)

where

M =



µ4
1e
−µ1b µ4

2e
−µ2b µ4

3e
−µ3b µ4

4e
−µ4b µ4

5e
−µ5b µ4

6e
−µ6b

µ5
1e
−µ1b µ5

2e
−µ2b µ5

3e
−µ3b µ5

4e
−µ4b µ5

5e
−µ5b µ5

6e
−µ6b

µ4
1e
µ1b µ4

2e
µ2b µ4

3e
µ3b µ4

4e
µ4b µ4

5e
µ5b µ4

6e
µ6b

µ5
1e
µ1b µ5

2e
µ2b µ5

3e
µ3b µ5

4e
µ4b µ5

5e
µ5b µ5

6e
µ6b

e−µ1b e−µ2b e−µ3b e−µ4b e−µ5b e−µ6b

µ1e
−µ1b µ2e

−µ2b µ3e
−µ3b µ4e

−µ4b µ5e
−µ5b µ6e

−µ6b


and a and b are given by

a =


α1

α2

α3

α4

α5

α6

 , b =


0
0
0
0

eiλb

iλeiλb

 .

The eigenfunctions for the adjoint operator are found similarly.
Figure 7 shows the real and imaginary parts of the eigenfunctions of B for n = 1,

3, 5, and 7, again with β = 2× 104 and b = 50. While the eigenfunctions do not have
a simple shape, increasing oscillation is apparent as n increases.
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5.4. Inner products

A biorthogonal system with respect to the energy inner product (3.2) is formed
by the eigenfunctions of B, Φ+ (λn, x) , and the eigenfunctions of B∗, Φ̂+ (λn, x). To
normalize the biorthogonal system, the inner product of Φ+ (λn, x) and Φ̂+ (λn, x) has
to be determined. From the definition of the energy inner product (3.2)

〈
Φ (λm, x) , Φ̂ (λn, x)

〉
H

=

∫ b

−b
∂xφ

+ (λm, x)
(
∂xφ̂

+
(
λ∗n, x

))∗
dx

+

∫ b

−b
(1 + P )iζ+

(
λ∗m, x

) (
iζ̂+
(
λ∗n, x

))∗
dx. (5.5)

The two integrals in (5.5) are considered separately. The first is

∫ b

−b
∂xφ

+ (λm, x)
(
∂xφ̂

+
(
λ∗n, x

))∗
dx

=

∫ b

−b

(
6∑
j=1

µj (λm) αje
µj (λm)x

)(
6∑
k=1

µk (λm) αke
µk(λn)x

)
dx

=

6∑
j=1

6∑
k=1

∫ b

−b
−µj (λm)2 αje

µj (λm)xαke
µk(λn)xdx

=

6∑
j=1

6∑
k=1

−µj (λm)2 αjαk

(
e(µj (λm)+µk(λn))b − e−(µj (λm)+µk(λn))b

µj (λm) + µk (λn)

)
(5.6)

and the second is∫ b

−b
(1 + P )iζ+

(
λ∗m, x

) (
iζ̂+
(
λ∗n, x

))∗
dx

=

∫ b

−b

(
6∑
j=1

− αj
λm

(
µj (λm)2 + βµj (λm)6

)
eµj (λm)x

)(
6∑
k=1

−αk
λn
µk (λn)

2 eµk(λn)x

)
dx

=

6∑
j=1

6∑
k=1

∫ b

−b
αjαk

λmλn

(
µj (λm)2 + βµj (λm)6

)
µk (λn)

2 eµj (λm)xeµk(λn)xdx

=

6∑
j=1

6∑
k=1

αjαk

λmλn

(
µj (λm)2 + βµj (λm)6

)
µk (λn)

2

(
e(µj (λm)+µk(λn))b − e−(µj (λm)+µk(λn))b

µj (λm) + µk (λn)

)

=

6∑
j=1

6∑
k=1

αjαk

λmλn

(−λ2
m

)
µk (λn)

2

(
e(µj (λm)+µk(λn))b − e−(µj (λm)+µk(λn))b

µj (λm) + µk (λn)

)
. (5.7)

Therefore the calculation of the inner product in equation (5.5) does not require
numerical integration.
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5.5. Solution

By solving (5.1) using the eigenfunctions of B and B∗ we find that the evolution of
the plate, from an initial displacement U0(x), is

U (x, t) =

∞∑
n=−∞

eiλnt

〈
U 0 (x) , Φ̂ (λn, x)

〉
H〈

Φ (λn, x) , Φ̂ (λn, x)
〉
H

Φ (λn, x) . (5.8)

The inner product of U0 with the eigenfunction Φ̂ (λn, x) is the only quantity left to
compute in (5.8). This inner product is written〈

U 0 (x) , Φ̂ (λn, x)
〉
H

=

6∑
j=1

αj
∫ b

−b
−µj (λn)

2 eµj (λn)xφ0 (x) dx+ αjµj (λn) eµj (λn)xφ0 (x)
∣∣b−b

αjλn

∫ b

−b
eµj (λn)xiζ0 (x) dx

 (5.9)

and the integrals must be evaluated by numerical integration. The solutions calculated
using the Lax–Phillips scattering theory are identical to those found using the self-
adjoint operator method and for this reason no further figures are shown.

6. Conclusions
The spectral theory of a linear thin plate floating on shallow water has been

derived. Two spectral-theory solutions have been presented which determine the time-
dependent motion of the thin plate. The first method was based on self-adjoint
operator theory and the second method was based on the Lax–Phillips scattering.
The self-adjoint method solved both the wave forcing and the free plate problem
while the Lax–Phillips method only solved for a free plate. The eigenfunctions for the
self-adjoint method are orthogonal and the eigenvalues are continuous and consist
of all R, which makes the calculation of the eigenvalues trivial. The Lax–Phillips
method has discrete eigenvalues which must be calculated numerically and the system
of eigenfunctions is biorthogonal. The advantage of the Lax–Phillips method is that
the modes of vibration of the plate–water system and their frequency and rate of
decay are found. While the relative speeds of the two methods depends of the exact
way in which they are implemented, the Lax–Phillips method should be considerably
faster if the eigenvalues have been determined.

The development of a spectral theory for more complicated hydroelastic problems
remains a major challenge. While this theory must be more complicated than that
presented here, many features can be expected to remain. For example, Ohmatsu
(1997) has shown that the single-frequency solutions can be used to solve certain
time-dependent problems and Hazard & Lenoir (1993) have shown that modes, in
which the solution can be expanded, exist for other hydroelastic systems.

I would like to thank the anonymous reviewers, Dr Kathy Ruggerio, and Profes-
sor James Sneyd for their very helpful comments; also, Professor Boris Pavlov for
explaining the Lax–Phillips scattering.



402 Michael H. Meylan

REFERENCES

Bishop, R. E. D., Price, W. G. & Wu, Y. 1986 A general linear hydroelasticity theory of floating
structures moving in a seaway. Phil. Trans. R. Soc. Lond. A 316, 375–426.

Chadan, K. & Sabatier, P. 1989 Inverse Problems in Quantum Scattering Theory. Springer.

Endo, H. & Yago, K. 1999 Time history response of a large floating structure subjected to dynamic
load. J. Soc. Naval Arch. Japan 186, 369–376.

Ertekin, R. C. & Kim, J. W. 1999 Hydroelastic response of a floating mat-type structure in oblique,
shallow-water waves. J. Ship Res. 43, 241–254.

Hazard, C. & Lenoir, M. 1993 Determination of scattering frequencies for an elastic floating body.
SIAM J. Math. Anal. 24, 1458–1514.

Kagemoto, H., Fujino, M. & Zhu, T. 1997 On the estimation method of hydrodynamic forces
acting on a very large floating structure. Appl. Ocean Res. 19, 49–60.

Kashiwagi, M. 1998 A b-spline galerkin scheme for calculating hydroelastic response of a very
large floating structure in waves. J. Mar. Sci. Tech. 3, 37–49.

Kashiwagi, M. 2000 A time-domain mode-expansion method for calculating transient elastic
responses of a pontoon-type VLFS. J. Mar. Sci. Tech. 5, 89–100.

Kashiwagi, M., Koterayama, W. & Ohkusu, M. 1998 Hydroelasticity in Marine Technology. Yomei
Printing Cooperative Society, Fukuoka, Japan.

Lax, P. D. & Phillips, R. S. 1989 Scattering Theory. Academic.

Meylan, M. H. & Squire, V. A. 1996 Response of a circular ice floe to ocean waves. J. Geophys.
Res. 101 (C4), 8869–8884.

Namba, Y. & Ohkusu, M. 1999 Hydroelastic behaviour of floating artifical islands in waves. Intl J.
Offshore Polar Engng 9 (2), 39–47.

Newman, J. N. 1994 Wave effects on deformable bodies. Appl. Ocean Res. 16, 45–101.

Ohkusu, M. & Namba, Y. 1998 Hydroelastic behaviour of a large floating platform of elongated
form on head waves in shallow water. In Hydroelasticity in Marine Technology (ed. M. Kashi-
wagi, W. Koterayama & M. Ohkusu), pp. 177–184. Yomei Printing Cooperative Society,
Fukuoka, Japan.

Ohmatsu, S. 1997 Numerical calculation of hydroelastic response of pontoon type VLFS. J. Soc.
Nav. Arch. Japan 182, 329–340.

Ohmatsu, S. 1998 Numerical calculation of hydroelastic behavior of VLFS in time domain. In
Hydroelasticity in Marine Technology (ed. M. Kashiwagi, W. Koterayama & M. Ohkusu),
pp. 89–97. Yomei Printing Cooperative Society, Fukuoka, Japan.

Sarpkaya, T. & Isaacson, M. 1981 Mechanics of Wave Forces on Offshore Structrures. Van Nostrand
Reinhold.

Squire, V. A., Duggan, J. P., Wadhams, P., Rottier, P. J. & Liu, A. J. 1995 Of ocean waves and
sea ice. Annu. Rev. Fluid Mech. 27, 115–168.

Stoker, J. J. 1957 Water Waves: The Mathematical Theory with Applications. Interscience.


